
A

MAJOR PROJECT REPORT ON

DESIGN AND DEVELOPMENT OF A HEAD, BLUETOOTH

AND VOICE CONTROLLED WHEELCHAIR

Submitted in partial fulfilment of the requirement for the award of degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

SUBMITTED BY

KRISHNA KANTH 218R1A0496

KURRI NAVYA 218R1A0497

KURAMA RAHUL 218R1A0498

LINGAMPALLY VENKATA SAI 218R1A0499

Under the Esteemed Guidance of

Mrs. G. PRAVALIKA

Assistant professor

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited by NBA)

Kandlakoya(V), Medchal(M), Telangana – 501401

(2024-2025)

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited by NBA)

Kandlakoya(V), Medchal Road, Hyderabad - 501 401

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

CERTIFICATE

This is to certify that the major-project work entitled “DESIGN AND DEVELOPMENT OF

HEAD, BLUETOOTH AND VOICE CONTROLLED WHEELCHAIR” is being

submitted by KRISHNA KANTH bearing Roll No 218R1A0496, KURRI NAVYA bearing

Roll No 218R1A0497, KURAMA RAHUL bearing Roll No 218R1A0498, VENKATA SAI

bearing Roll No 218R1A0499 in B.Tech IV-II semester, Electronics and Communication

Engineering is a record Bonafide work carried out during the academic year 2024-25. The results

embodied in this report have not been submitted to any other University for the award of any

degree.

INTERNAL GUIDE HEAD OF THE DEPARTMENT

Mrs. PRAVALIKA Dr. SUMAN MISHRA

EXTERNAL EXAMINER

ACKNOWLEDGEMENTS

We sincerely thank the management of our college CMR Engineering College for providing

required facilities during our project work. We derive great pleasure in expressing our sincere

gratitude to our Principal Dr. A. S. REDDY for his timely suggestions, which helped us to

complete the project work successfully. It is the very auspicious moment we would like to

express our gratitude to Dr. SUMAN MISHRA, Head of the Department, ECE for his consistent

encouragement during the progress of this project.

We take it as a privilege to thank our project coordinator Dr. T. SATYANARAYANA,

Associate Professor, Department of ECE for the ideas that led to complete the project work and

we also thank him for his continuous guidance, support and unfailing patience, throughout the

course of this work. We sincerely thank our project internal guide Mrs. PRAVALIKA, Assistant

Professor of ECE for guidance and encouragement in carrying out this project work.

DECLARATION

We hereby declare that the major project entitled “DESIGN AND DEVELOPMENT OF A

HEAD, BLUETOOTH AND VOICE CONTROLLED WHEELCHAIR” is the work

done by us in campus at CMR ENGINEERING COLLEGE, Kandlakoya during the

academic year 2024-2025 and is submitted as major project in partial fulfilment of the

requirements for the award of degree of BACHELOR OF TECHNOLOGY in

ELECTRONICS AND COMMUNICATION ENGINEERING FROM JAWAHARLAL

NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD.

KRISHNA KANTH (218R1A0496)

K. NAVYA (218R1A0497)

K. RAHUL (218R1A0498)

L. VENKATA SAI (218R1A0499)

i

ABSTRACT

This project presents an innovative approach to wheelchair mobility through the design and

development of a head, Bluetooth, and voice-controlled wheelchair. This system aims to

empower individuals with limited hand dexterity or those who find traditional joystick

controls challenging to navigate comfortably.

The proposed solution includes a specialized head-mounted device, Bluetooth

connectivity, and a voice recognition system equipped with advanced sensors to detect head

gestures and spoken commands. These inputs are translated into precise controls, enabling

the user to navigate the wheelchair's direction and speed effectively. By leveraging advanced

technology, the project emphasizes the design of the head control system, seamless

Bluetooth integration, the development of robust voice-command algorithms, and the

implementation of a user-friendly wireless communication system.

The anticipated outcome is a highly functional and intuitive wheelchair system that

significantly enhances mobility and independence for individuals with disabilities. This

innovative solution has the potential to improve the quality of life for many by providing a

more accessible and efficient means of wheelchair control, thus promoting greater autonomy

and comfort for users.

ii

CONTENTS

CHAPTERS PAGE

CERTIFICATE I

ACKNOWLEDGEMENTS II

DECLARATION III

ABSTRACT i

CONTENTS ii

LIST OF FIGURES iii

LIST OF TABLES iv

CHAPTER-1

INTRODUCTION 1

1.1 OVERVIEW OF THE PROJECT 1

1.2 OBJECTIVE OF THE PROJECT 1

1.3 ORGANIZATION OF THE PROJECT 2

CHAPTER-2

LITERATURE SURVEY 4

2.1 EXISTING SYSTEM 4

2.2 PROPOSED SYSTEM 4

2.3 EMBEDDED INTRODUCTION 5

2.4 WHY EMBEDDED? 9

2.5 DESIGN APPROACHES 10

2.6 COMBINATION OF LOGIC DEVICE 15

CHAPTER-3

HARDWARE REQUIREMENTS 17

3.1 HARDWARE 17

CHAPTER-4

SOFTWARE REQUIREMENTS 23

4.1 SOFTWARE 23

4.2 RESEARCH 26

CHAPTER-5

WORKING AND COMPONENTS 29

5.1 BLOCK DIAGRAM 29

5.2 WORKING 30

5.2.1 INTRODUCTION TO ARDUINO 32

iii

CHAPTERS PAGE

5.2.2 BLOCK DIAGRAM 49

5.2.3 INTRODUCTION TO BLUETOOTH MODULE 50

5.2.4 BLUETOOTH MODULE AND WORKING PRINCIPLE 51

5.2.5 INTRODUCTION TO MEMS SENSOR 51

 5.2.6 INTRODUCTION TO VOICE CONTROL MODULE 53

 5.2.7 BLOCK DIAGRAM 53

CHAPTER-6 55

RESULTS 55

ADVANTAGES 56

APPLICATIONS 57

CONCLUSION 57

FUTURE SCOPE 57

REFERENCES 59

APPENDIX 60

iv

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

2.1 EMBEDDED OS 6

2.2 EMBEDDED SYSTEMS 8

2.3 BLOCKS OF EMBEDDED SYSTEMS 9

2.4 EMBEDDED SYSTEMS HARDWARE 10

2.5 EMBEDDED DESIGN- PROCESS- STEPS 11

2.6 APPLICATION OF EMBEDDED SYSTEMS 14

2.7 LOGIC GATES 15

2.8 EMBEDDED SYSTEMS GROUP 16

3.1 EMBEDDED SYSTEMS HARDWARE BLOCK DIAGRAM 18

3.2 BASIC EMBEDDED STRUCTURE 20

4.1 ARDUINO UNO 23

4.2 DEVICE MANAGER 24

4.3 UPDATE DRIVE SOFTWARE 24

4.4 ARDUINO FILE BASIC 25

4.5 ARDUINO TOOLS BOARD 26

4.6 BLINK ARDUINO TOOLS 26

5.1 BLOCK DIAGRAM OF HEAD, BLUETOOTH AND VOICE

CONTROLLED WHEELCHAIR

29

5.2 STRUCTURE OF ARDUINO BOARD 33

5.3 ARDUINO BOARD 33

5.4 PIN CONFIGURATION OF ATMEGA328 36

5.5 AVR BLOCK DIAGRAM 40

5.6 AVR STATUS REGISTER 41

5.7 ARDUINO BLOCK DIAGRAM 49

5.8 BLUETOOTH MODULE 50

5.9 WORKING OF BLUETOOTH MODULE 50

5.10 MEMS SENSOR 52

5.11 BLOCK DIAGRAM OF VOICE CONTROL MODULE 54

6.1 RESULT OF HEAD, BLUETOOTH AND VOICE
CONTROLLED WHEELCHAIR

55

6.2 RESULT OF HEAD MOTION CONTEROL WITH CAP 56

v

LIST OF TABLES

TABLE NO LIST OF TABLE NAME PAGE NO

2.1 EMBEDDED SYSTEMS DESIGNS SOFTWARE

DEVELOPMENT ACTIVITIES

14

5.2.1 STACK POINTER INSTRUCTIONS 43

5.2.2 RESET AND INTERRUPT VECTORS 45

5.2.3 RESET AND INTERRUPT VECTORS PLACEMENT 47

5.2.4 COMMAND AND FUNCTION OF VOICE CONTROL

MODULE
54

1

CHAPTER-1

INTRODUCTION

1.1 OVERVIEW OF THE PROJECT

In recent years, technological advancements have significantly improved the quality of life

for individuals with disabilities. One such innovation is the head, Bluetooth, and voice-

controlled wheelchair. This cutting-edge technology empowers users with limited hand

dexterity or those who find traditional joystick controls challenging.

The core components of this system include a specialized head-mounted device,

Bluetooth module, and voice recognition system equipped with advanced sensors. These

sensors, such as gyroscopes and microphones, accurately capture head movements and voice

commands. The collected data is then processed by a sophisticated control algorithm to

extract relevant information and generate precise commands for the wheelchair's motors.

The algorithm translates head gestures and spoken instructions into specific actions, such as

forward, backward, left, right, and stop.

To ensure seamless communication between the control system and the wheelchair, a

robust wireless communication system is implemented. This system transmits control

signals from the head-mounted device and voice module to the wheelchair’s control unit, By

providing greater control and flexibility, this technology can significantly enhance the

quality of life for individuals with disabilities. It offers a more intuitive and efficient means

of wheelchair control, empowering users to navigate their surroundings with greater ease

and independence.

1.2 OBJECTIVE OF THE PROJECT

The objective of the Head, Bluetooth, and Voice-Controlled Wheelchair project is to enhance

mobility solutions by integrating multiple control mechanisms to provide users with a more

flexible, efficient, and accessible means of transportation. The primary aim is to develop a

wheelchair that can be controlled using head movements, voice commands, and Bluetooth-

enabled devices, thereby offering users multiple modes of operation based on their comfort

and ability. This multi-modal control system is designed to assist individuals with varying

levels of mobility impairment, making independent movement more feasible and

convenient.

2

In addition to improving accessibility, the project seeks to enhance the responsiveness and

accuracy of wheelchair control by employing advanced sensor-based technologies.

Head control system utilizes motion sensors to detect directional tilts, while the voice

recognition system processes spoken commands for movement control. These features work

alongside a Bluetooth interface that allows users to control the wheelchair remotely via a

smartphone or tablet, ensuring a reliable alternative for navigation. The wheelchair is also

designed to operate efficiently in different environments, providing smooth navigation and

stability on various surfaces.

The project also aims to improve user safety and comfort through real-time feedback

systems and obstacle detection. By integrating smart sensors, the wheelchair can alert users

to potential obstacles, preventing accidents and ensuring a secure riding experience.

Furthermore, real-time tracking and monitoring capabilities can assist caregivers or

healthcare providers in keeping track of the user's movement and well-being.

By combining automation with user-centric design, this project aims to empower

individuals with mobility challenges by providing a smarter, more intuitive, and reliable

wheelchair system. Ultimately, the goal is to enhance independence, improve daily mobility,

and contribute to a more inclusive and technologically advanced assistive device ecosystem.

1.3 ORGANIZATION OF THE PROJECT

The organization of the Head, Bluetooth, and Voice-Controlled Wheelchair project involves

a structured approach, starting with the planning and initiation phase where project

objectives, scope, and requirements are clearly defined. This includes determining the

functionalities, performance metrics, and budget, as well as developing a timeline with key

milestones. Following this, the research and development phase begins with an investigation

into the appropriate technologies for head movement detection, voice recognition, and

Bluetooth-based control integration. This leads to the creation of design concepts and the

development of a prototype to test these ideas.

During the hardware development phase, the physical components of the wheelchair are

built, including the frame, sensors, motion detectors, and necessary electronic systems for

multi-modal control. Concurrently, software development focuses on integrating the various

control mechanisms and developing user interfaces for real-time monitoring and navigation

assistance. Once the prototype is tested and refined, the project moves into the

3

deployment phase, where the wheelchair is introduced in selected environments for pilot

testing.

Finally, ongoing support and maintenance ensure the system's reliability and address

any issues that arise, ensuring a successful and efficient implementation of the smart

wheelchair system.

4

CHAPTER-2

LITERATURE SURVEY

2.1 EXISTING SYSTEM

In the present system, individuals with mobility impairments face challenges in

independently controlling their wheelchairs. Traditional wheelchairs rely solely on manual

operation, which can be difficult for users with limited upper body strength or dexterity.

While some advanced wheelchairs exist, they often lack multiple control options, making

them less adaptable to different user needs. The use of the existing system leads to the

following problems: Individuals with severe disabilities may struggle to operate a traditional

joystick. Lack of alternative control methods limits accessibility for users with varying levels

of mobility impairment. Maneuvering a wheelchair in tight spaces can be difficult without

precise control. Dependency on caregivers increases when users are unable to operate

wheelchairs independently.

All these problems can be addressed in this project through the Head, Bluetooth, and

Voice-Controlled Wheelchair system. Users will have multiple control options, including

head movement, voice commands, and Bluetooth-enabled remote operation, making

wheelchair navigation more accessible. The integration of smart control mechanisms allows

for greater independence and ease of use. While effective for basic mobility, traditional

wheelchairs rely heavily on manual input, which can be restrictive for individuals with

severe physical limitations. The absence of smart control options reduces adaptability in

dynamic environments, limiting user autonomy and efficiency.

2.2 PROPOSED SYSTEMS

The advent of assistive technologies has significantly improved the quality of life for

individuals with disabilities. However, traditional wheelchair control methods, such as

joysticks, often present challenges for users with limited hand dexterity or those who find

them cumbersome. To address these limitations, a revolutionary Head, Bluetooth, and

Voice-Controlled Wheelchair system is proposed.

This innovative system leverages the power of advanced sensor technology and

sophisticated control algorithms to empower users with greater independence and mobility.

The core components of the system include a head movement detection module, a voice

recognition system, and a Bluetooth-enabled control interface. These sensors accurately

5

capture head gestures, voice commands, and Bluetooth-based inputs, translating them

into precise control commands for the wheelchair.

A sophisticated control algorithm processes the sensor data in real time, extracting relevant

information and generating appropriate control signals. The algorithm maps specific head

movements, spoken instructions, and Bluetooth commands to various wheelchair functions

such as forward, backward, left, right, and stop. By customizing the algorithm to individual

user preferences, the system can be tailored to meet diverse needs and abilities.

To ensure seamless communication between the control modules and the wheelchair, a

robust wireless communication system is implemented. This system transmits control

signals to the wheelchair’s control unit, allowing for real-time navigation. By utilizing

reliable and low-latency wireless technology, the system ensures a seamless and responsive

user experience.

The integration of the multi-control system with a suitable wheelchair platform is

crucial. The wheelchair’s control unit is modified to receive and process the wireless signals

from the head movement, voice commands, and Bluetooth interface, enabling precise control

of the wheelchair’s motors. Compatibility with various wheelchair models and

configurations is ensured to accommodate a wide range of user preferences and

requirements.

The potential benefits of this Head, Bluetooth, and Voice-Controlled Wheelchair system

are significant. By providing a more intuitive and efficient means of wheelchair control, it

can significantly enhance the mobility and independence of individuals with disabilities.

Users can navigate their surroundings with greater ease, access public spaces more readily,

and participate in social activities with confidence.

Furthermore, the system can be customized to suit individual needs, allowing users to

tailor the control scheme to their preferences and abilities. By continuously refining the

technology and exploring new possibilities, the goal is to create a truly transformative

solution that empowers individuals with disabilities and improves their overall quality of

life.

2.3 INTRODUCTION TO EMBEDDED SYSTEMS

An embedded system is a combination of computer hardware and software designed for a

specific function or functions within a larger system. The systems can be programmable or

6

with fixed functionality. Industrial machines, consumer electronics, agricultural and process

industry devices, automobiles, medical equipment, cameras, household appliances,

airplanes, vending machines and toys, as well as mobile devices, are possible locations for

an embedded system.

While embedded systems are computing systems, they can range from having no user

interface (UI) -- for example, on devices in which the system is designed to perform a single

task -- to complex graphical user interfaces (GUIs), such as in mobile devices. User

interfaces can include buttons, LEDs and touchscreen sensing. Some systems use remote

user interfaces as well.

Fig 2.1: Embedded OS

History of embedded systems

Embedded systems date back to the 1960s. Charles Stark Draper developed an integrated

circuit (IC) in 1961 to reduce the size and weight of the Apollo Guidance Computer, the

digital system installed on the Apollo Command Module and Lunar Module. The first

computer to use ICs, it helped astronauts collect real-time flight data.

In 1965, Autonoetic, now a part of Boeing, developed the D-17B, the computer used in

the Minuteman I missile guidance system. It is widely recognized as the first mass-

produced embedded system. When the Minuteman II went into production in 1966, the D-

17B was replaced with the NS-17 missile guidance system of integrated circuits.

https://searchapparchitecture.techtarget.com/definition/user-interface-UI
https://searchwindevelopment.techtarget.com/definition/GUI
https://internetofthingsagenda.techtarget.com/feature/Biometric-IoT-sensors-shape-the-future-of-user-interfaces

7

 In 1968, the first embedded system for a vehicle was released; the Volkswagen 1600 used

a microprocessor to control its electronic fuel injection system.

By the late 1960s and early 1970s, the price of integrated circuits dropped, and usage

surged. The first microcontroller was developed by Texas Instruments in 1971. The TMS

1000 series, which became commercially available in 1974, contained a 4-bit processor,

read-only memory (ROM) and random-access memory (RAM), and cost around $2 apiece

in bulk orders.

Also, in 1971, Intel released what is widely recognized as the first commercially

available processor, the 4004. The 4-bit microprocessor was designed for use in calculators

and small electronics, though it required eternal memory and support chips. The 8-bit Intel

8008, released in 1972, had 16 KB of memory; the Intel 8080 followed in 1974 with 64 KB

of memory. The 8080's successor, x86 series, was released in 1978 and is still largely in use

today.

In 1987, the first embedded operating system, the real-time VxWorks, was released by

Wind River, followed by Microsoft's Windows Embedded CE in 1996. By the late 1990s,

the first embedded Linux products began to appear. Today, Linux is used in almost all

embedded devices.

Characteristics of embedded systems

The main characteristic of embedded systems is that they are task specific. They perform a

single task within a larger system. For example, a mobile phone is not an embedded system,

it is a combination of embedded systems that together allow it to perform a variety of general-

purpose tasks. The embedded systems within it perform specialized functions. For example,

the GUI performs the singular function of allowing the user to interface with the device. In

short, they are programmable computers, but designed for specific purposes, not general

ones.

The hardware of embedded systems is based around microprocessors and

microcontrollers. Microprocessors are very similar to microcontrollers, and generally refer

to a CPU that is integrated with other basic computing components such as memory chips

and digital signal processors (DSP). Microcontrollers have those components built into one

chip.

https://searchstorage.techtarget.com/definition/RAM-random-access-memory
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://internetofthingsagenda.techtarget.com/definition/microcontroller
https://whatis.techtarget.com/definition/digital-signal-processing-DSP

8

Additionally, embedded systems can include the following characteristics: comprised

of hardware, software and firmware; embedded in a larger system to perform a specific

function as they are built for specialized tasks within the system, not various tasks; either

microprocessor-based or microcontroller-based -- both are integrated circuits that give the

system compute power; often used for sensing and real-time computing.

Fig 2.2: Embedded Systems

In internet of things (IoT) devices -- devices that are internet-connected and do not

require a user to operate; vary in complexity and in function, which affects the type of

software, firmware and hardware they use; and often required to perform their function under

a time constraint to keep the larger system functioning properly. Embedded systems vary in

complexity, but generally consist of three main elements:

• Hardware. The hardware of embedded systems is based around microprocessors and

microcontrollers. Microprocessors are very similar to microcontrollers, and generally refer

to a CPU that is integrated with other basic computing components such as memory chips

and digital signal processors (DSP). Microcontrollers have those components built into one

chip.

• Software. Software for embedded systems can vary in complexity. However, industrial

grade microcontrollers and embedded IoT systems generally run very simple software that

requires little memory.

• Firmware. Embedded firmware is usually used in more complex embedded systems to

connect the software to the hardware. Firmware is the software that interfaces directly with

the hardware. A simpler system may just have software directly in the chip, but more

complicated systems need firmware under more complex software applications and

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/microcontroller
https://whatis.techtarget.com/definition/digital-signal-processing-DSP

9

operating systems.

Fig 2.3: Blocks Of Embedded Systems

2.4 WHY EMBEDDED?

An embedded system is a computer system with a particular defined function within a larger

mechanical or electrical system. They control many devices in common use. They consume

low power, are of a small size and their cost is low per-unit. Modern embedded systems are

often based on micro-controllers. A microcontroller is a small computer on a single

integrated circuit which contains a processor core, memory, and programmable input and

output peripherals. As Embedded system is dedicated to perform specific tasks therefore,

they can be optimized to reduce the size and cost of the product and increase the reliability

and performance. Almost every Electronic Gadget around us is an Embedded System, digital

watches, MP3 players, Washing Machine, Security System, scanner, printer, a cellular

phone, Elevators, ATM, Vendor Machines, GPS, traffic lights, Remote Control, Microwave

Oven and many more. The uses of embedded systems are virtually limitless because every

day new products are introduced to the market which utilize embedded computers in a

number of ways

Embedded Systems has brought about a revolution in Science. It is also a part of a

Internet of Things (IoT) – a technology in which objects, animals or people are provided

with unique identifiers and the ability to transfer data over a network without requiring

human-to-human or human-to-computer interaction. Let’s make it easy for you. For

Example – You are sitting in a train headed to your destination and you are already fifty

miles away from your home and suddenly you realise that you forgot to switch of the fan.

Not to worry, you can switch it off just by clicking a button on your cell phone using this

technology – The Internet of Things.

10

Well this is just one good thing about IoT. We can monitor Pollution Levels, we can

control the intensity of street lights as per the season and weather requirements, IoT can also

provide the parents with real-time information about their baby’s breathing, skin

temperature, body position, and activity level on their smartphones and many other

applications which can make our life easy.

Fig 2.4: EMBEDDED SYSTEMS HARDWARE

2.5 DESIGN APPROACHES

A system designed with the embedding of hardware and software together for a specific

function with a larger area is embedded system design. In embedded system design, a

microcontroller plays a vital role. Micro-controller is based on Harvard architecture, it is an

important component of an embedded system. External processor, internal memory and i/o

components are interfaced with the microcontroller. It occupies less area, less power

consumption. The application of microcontrollers is MP3, washing machines. Critical

Embedded Systems (CES) are systems in which failures are potentially catastrophic and,

therefore, hard constraints are imposed on them. In the last years the amount of software

accommodated within CES has considerably changed. For example, in smart cars the amount

of software has grown about 100 times compared to previous years. This change means that

software design for these systems is also bounded to hard constraints (e.g., high security and

performance). Along the evolution of CES, the approaches for designing them are also

changing rapidly, so as to fit the specialized needs of CES. Thus, a broad understanding of

such approaches is missing.

Steps in the Embedded System Design Process

The different steps in the embedded system design flow diagram include the following.

11

Abstraction

In this stage the problem related to the system is abstracted.

Fig 2.5: Embedded Design-Process-Steps

Hardware – Software Architecture

Proper knowledge of hardware and software to be known before starting any design process.

Extra Functional Properties

Extra functions to be implemented are to be understood completely from the main design.

System Related Family of Design

When designing a system, one should refer to a previous system-related family of design.

Modular Design

Separate module designs must be made so that they can be used later on when required.

12

Mapping

Based on software mapping is done. For example, data flow and program flow are mapped

into one.

User Interface Design

In user interface design it depends on user requirements, environment analysis and function

of the system. For example, on a mobile phone if we want to reduce the power consumption

of mobile phones, we take care of other parameters, so that power consumption can be

reduced.

Refinement

Every component and module must be refined appropriately so that the software team can

understand. Architectural description language is used to describe the software design.

• Control Hierarchy Partition of structure

• Data structure and hierarchy

• Software Procedure.

In user interface design it depends on user requirements, environment analysis and function

of the system. For example, on a mobile phone if we want to reduce the power consumption

of mobile phones, we take care of other parameters, so that power consumption can be

reduced. To help countries and health-care facilities to achieve system change and adopt

alcohol-based handrubs as the gold standard for hand hygiene in health care, WHO has

identified formulations for their local preparation. Logistic, economic, safety, and cultural.

Some examples include:

Design Metrics / Design

Parameters of an Embedded

System

Function

Power Dissipation Always maintained low

Performance Should be high

13

Process Deadlines The process/task

should be completed

within a specified

time.

Manufacturing Cost Should be maintained.

Engineering Cost It is the cost for the

edit- test-

debug of

hardware and

software.

Size Size is defined in

terms of memory

RAM/ROM/Flash

Memory/Physical

Memory.

Prototype It is the total time

taken for developing a

system and testing it.

Safety System safety should

be taken like phone

locking, user safety

like engine breaks

down safety measure

must be taken

Maintenance Proper maintenance of

the system must be

taken, in order to avoid

system failure.

14

Time to market It is the time taken for

the product/system

developed to be

launched into the

market.

Table:2.1 Embedded System Design Software Development Activities

● Automobiles: Modern cars commonly consist of many computers (sometimes as

many as 100), or embedded systems, designed to perform different tasks within the

vehicle. Some of these systems perform basic utility function and others provide

entertainment or user facing functions. Some embedded systems in consumer vehicles

include cruise control, backup sensors, suspension control, navigation systems and airbag

systems.

● Mobile phones: These consist of many embedded systems, including GUI software and

hardware, operating systems, cameras, microphones and USB I/O modules.

Fig 2.6: Applications Of Embedded Systems

● Industrial machines: They can contain embedded systems, like sensors, and can be

embedded systems themselves. Industrial machines often have embedded automation

systems that perform specific monitoring and control functions.

15

● Medical equipment: These may contain embedded systems like sensors and control

mechanisms. Medical equipment, such as industrial machines, also must be very user

friendly, so that human health isn't jeopardized by preventable machine mistakes. This

means they'll often include a more complex OS and GUI designed for an appropriate UI.

The choice of components for the WHO-recommended handrub formulations takes into

account cost constraints and microbicidal activity. The following two formulations are

recommended for local production with a maximum of 50 litres per lot to ensure safety in

production and storage.

2.6 COMBINATION OF LOGIC DEVICES

Logic gates are physical devices that use combinational logic to switch an electrical one

(“1”) or zero (“0”) to downstream blocks in digital design. Combinational logic uses those

bits to send or receive data within embedded systems. Data bits build into digital words used

to communicate with other design blocks within the system. Digital bits and words do this

with logic gates in an organized fashion using dedicated address, data, or control signal

nodes. Logic gates are the physical devices that enable processing of many 1’s and 0’s

Fig 2.7: Logic Gates

Logic families are collections of integrated circuits containing logic gates that perform

functions needed by embedded systems to communicate with one another to drive the design.

Logic gates are organized into families relative to the type of material and its operational

characteristics. Most logic gates are made from silicon, although some utilize gallium

arsenide or other semiconductor materials. The semiconductor material is doped

16

information throughout an embedded system. Because of its compact size, many millions of

transistors combine within very small spaces. This allows millions of gates to operate in

compact areas while transmitting and receiving mind-boggling amounts of intelligence

through combinational logic. This is all accomplished within a minimal power budget.

Fig 2.8: Embedded Systems Group

https://octopart.com/blog/archives/2018/05/rf-switches-to-test-your-frequency-dependent-circuits

17

CHAPTER-3

HARDWARE REQUIREMENTS

3.1 HARDWARE

Embedded system hardware can be microprocessor- or microcontroller-based. In either case,

an integrated circuit is at the heart of the product that is generally designed to carry out real

time computing. Microprocessors are visually indistinguishable from microcontrollers.

However, the microprocessor only implements a central processing unit (CPU) and, thus,

requires the addition of other components such as memory chips. Conversely,

microcontrollers are designed as self-contained systems.

Microcontrollers include not only a CPU, but also memory and peripherals such as

flash memory, RAM or serial communication ports. Because microcontrollers tend to

implement full (if relatively low computer power) systems, they are frequently used on more

complex tasks. For example, microcontrollers are used in the operations of vehicles, robots,

medical devices and home appliances. At the higher end of microcontroller capability, the

term System on a chip (SOC) is often used, although there's no exact delineation in terms of

RAM, clock speed, power consumption and so on.

It is one of the characteristics of embedded and cyber-physical systems that both

hardware and software must be taken into account. The reuse of available hard- and software

components is at the heart of the platform-based design methodology. Consistent with the

need to consider available hardware components and with the design information flow, we

are now going to describe some of the essentials of embedded system hardware.

Hardware for embedded systems is much less standardized than hardware for

personal computers. Due to the huge variety of embedded system hardware, it is impossible

to provide a comprehensive overview of all types of hardware components. Nevertheless,

we will try to provide a survey of some of the essential components which can be found in

most systems. The choice of components for the WHO-recommended hand rub formulations

takes into account cost constraints and microbicidal activity. The following two formulations

are recommended for local production with a maximum of 50 litres per lot to ensure safety

in production and storage.

Markets and Markets, a business to business (B2B) research firm, predicts that the

embedded market will be worth $116.2 billion by 2025. Chip manufacturers for embedded

https://whatis.techtarget.com/definition/processor
https://searchstorage.techtarget.com/definition/flash-memory
https://searchstorage.techtarget.com/definition/flash-memory
https://searchcio.techtarget.com/definition/B2B

18

systems include many well-known technology companies, such as Apple, IBM, Intel and

Texas Instruments, as well as numerous other companies less familiar to those outside the

field. The expected growth is partially due to the continued investment in artificial

intelligence (AI), mobile computing and the need for chips designed for that high-level

processing.

To be used efficiently, all computer software needs certain hardware components

or other software resources to be present on a computer.[1] These prerequisites are known as

(computer) system requirements and are often used as a guideline as opposed to an absolute

rule. Most software defines two sets of system requirements: minimum and recommended.

With increasing demand for higher processing power and resources in newer versions of

software, system requirements tend to increase over time.

Fig 3.1: Embedded Systems Hardware Block Diagram

Industry analysts suggest that this trend plays a bigger part in driving upgrades to existing

computer systems than technological advancements. A second meaning of the term of

system requirements, is a generalisation of this first definition, giving the requirements to be

met in the design of a system or subsystem.

https://searchcio.techtarget.com/answer/What-is-embedded-intelligence-and-how-can-CIOs-prepare-for-it
https://searchcio.techtarget.com/answer/What-is-embedded-intelligence-and-how-can-CIOs-prepare-for-it
https://searchcio.techtarget.com/answer/What-is-embedded-intelligence-and-how-can-CIOs-prepare-for-it
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/System_requirements#cite_note-1
https://en.wikipedia.org/wiki/System_requirements#cite_note-1

19

Often manufacturers of games will provide the consumer with a set of requirements that are

different from those that are needed to run a software. These requirements are usually called

the recommended requirements. These requirements are almost always of a significantly

higher level than the minimum requirements, and represent the ideal situation in which to

run the software. Generally speaking, this is a better guideline than minimum system

requirements in order to have a fully usable and enjoyable experience with that software.

The most common set of requirements defined by any operating system or

software application is the physical computer resources, also known as hardware, A

hardware requirements list is often accompanied by a hardware compatibility list (HCL),

especially in case of operating systems. An HCL lists tested, compatible, and sometimes

incompatible hardware devices for a particular operating system or application. The

following subsections discuss the various aspects of hardware requirements.

Architecture

All computer operating systems are designed for a particular computer architecture. Most

software applications are limited to particular operating systems running on particular

architectures. Although architecture-independent operating systems and applications exist,

most need to be recompiled to run on a new architecture. See also a list of common operating

systems and their supporting architectures.

Processing power

The power of the central processing unit (CPU) is a fundamental system requirement for any

software. Most software running on x86 architecture define processing power as the model

and the clock speed of the CPU. Many other features of a CPU that influence its speed and

power, like bus speed, cache, and MIPS are often ignored. This definition of power is often

erroneous, as AMD Athlon and Intel Pentium CPUs at similar clock speed often have

different throughput speeds. Intel Pentium CPUs have enjoyed a considerable degree of

popularity, and are often mentioned in this category.

Memory

All software, when run, resides in the random access memory (RAM) of a computer.

Memory requirements are defined after considering demands of the application, operating

system, supporting software and files, and other running processes. Optimal performance

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Hardware_compatibility_list
https://en.wikipedia.org/wiki/Hardware_compatibility_list
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Comparison_of_operating_systems#Technical_information
https://en.wikipedia.org/wiki/Comparison_of_operating_systems#Technical_information
https://en.wikipedia.org/wiki/Comparison_of_operating_systems#Technical_information
https://en.wikipedia.org/wiki/Comparison_of_operating_systems#Technical_information
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/X86_architecture
https://en.wikipedia.org/wiki/X86_architecture
https://en.wikipedia.org/wiki/List_of_microprocessors
https://en.wikipedia.org/wiki/List_of_microprocessors
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Front_side_bus
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Instructions_per_second
https://en.wikipedia.org/wiki/Instructions_per_second
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Athlon
https://en.wikipedia.org/wiki/Athlon
https://en.wikipedia.org/wiki/Athlon
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Pentium_(brand)
https://en.wikipedia.org/wiki/Pentium_(brand)
https://en.wikipedia.org/wiki/Pentium_(brand)
https://en.wikipedia.org/wiki/Pentium_(brand)
https://en.wikipedia.org/wiki/Pentium_(brand)
https://en.wikipedia.org/wiki/Random_access_memory
https://en.wikipedia.org/wiki/Random_access_memory

20

of other unrelated software running on a multi-tasking computer system is also considered

when defining this requirement.

Secondary storage

Data storage device requirements vary, depending on the size of software installation,

temporary files created and maintained while installing or running the software, and possible

use of swap space (if RAM is insufficient).

Display adapter

Software requiring a better than average computer graphics display, like graphics editors

and high-end games, often define high-end display adapters in the system requirements.

Peripherals

Some software applications need to make extensive and/or special use of some peripherals,

demanding the higher performance or functionality of such peripherals. Such peripherals

include CD-ROM drives, keyboards, pointing devices, network devices, etc.

Basic Structure of an Embedded System

The following illustration shows the basic structure of an embedded system

Fig:3.2: Basic Embedded Structure

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Graphics_software
https://en.wikipedia.org/wiki/Graphics_software
https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/CD-ROM
https://en.wikipedia.org/wiki/Computer_keyboard
https://en.wikipedia.org/wiki/Computer_keyboard
https://en.wikipedia.org/wiki/Pointing_device
https://en.wikipedia.org/wiki/Pointing_device
https://en.wikipedia.org/wiki/Computer_networking_device
https://en.wikipedia.org/wiki/Computer_networking_device

21

Sensor − It measures the physical quantity and converts it to an electrical signal which can

be read by an observer or by any electronic instrument like an A2D converter. A sensor

stores the measured quantity to the memory.

● A-D Converter − An analog-to-digital converter converts the analog signal sent by

the sensor intoa digital signal.

● Processor & ASICs − Processors process the data to measure the output and store it

to the memory.

● D-A Converter − A digital-to-analog converter converts the digital data fed by the

processor to analog data

● Actuator − An actuator compares the output given by the D-A Converter to the actual

(expected) output stored in it and stores the approved output.

In this loop, information about the physical environment is made available through

sensors.Typically, sensors generate continuous sequences of analog values. In this book,

we will restrict ourselves to information processing where digital computers process

discrete sequences of values. Appropriate conversions are performed by two kinds of

circuits: sample-and-hold-circuits and analog-to-digital (A/D) converters. After such

conversion, information can be processed digitally.Generated results can be displayed and

also be used to control the physical environment through actuators. Since most actuators

are analog actuators, conversion from digital to analog signals is also needed. This model

is obviously appropriate for control applications. For other applications, it can be employed

as a first order approximation. In the following, we will describe essential hardware

components of cyber-physical systems following the loop structure.

They aren’t a lot different to the requirements for working with non-embedded systems.

A lot depends onthe purpose of the embedded system. You need to understand:

● Requirement set

● Environmental context

● Regulator requirements

● Interface specifications, including choice of hardware, and how to drive that hardware

● Criticality of what you are building, including hazards, and any defined mitigation

22

● tothose hazards. For instance, is there a safe state to fail to if anything goes wrong.

● Real time constraints, such as cycle times, and time allowable for response. This

should also include hysteresis, response of mechanical components, and backlash.

● Real time response from the combination of code, operating system, and hardware

youare working with.

● Architecture, including any need for redundancy, diversity, fail safety, voting systems,

comparators.

● Platform limitations. Cross compilers, linkers, auto-code generators, etc.

● Choice of operating environment, such as bare metal minimal kernel, real time

operating system, or regular operating system.

● Whether you can rely on your tools. In particular, you need to understand how your

tools can fail, and how you’d know if something went wrong.

● Communications protocols. Synchronous, and asynchronous communications. Error

checking. Error correcting.

● Timing issues, clock rates, reentrancy. Anything that might stop you meeting your

realtime response targets, or impact the firing of timers.

Exception handling.

Interrupts. How to handle them. How long they take. What the impact is upon responding to

real time response targets.

How to test on the platform you are working with?

As well as that, you also need to know how to code. Choose a language well, and constrain

your use of it to assure you meet the limitations you found by considering the above. If

required for the domain, use static code checking. If necessary, use formal proof.

23

CHAPTER-4

SOFTWARE REQUIREMENTS

4.1 ARDUINO SOFTWARE

The Arduino is a family of microcontroller boards to simplify electronic design, prototyping

and experimenting for artists, hackers, hobbyists, but also many professionals. People use it

as brains for their robots, to build new digital music instruments, or to build a system that

lets your house plants tweet you when they’re dry. Arduinos (we use the standard Arduino

Uno) are built around an ATmega microcontroller — essentially a complete computer with

CPU, RAM, Flash memory, and input/output.

What you will need:

• A computer (Windows, Mac, or Linux)

• An Arduino-compatible microcontroller (anything from this guide should work)

• A USB A-to-B cable, or another appropriate way to connect your Arduinocompatible

microcontroller to your computer (check out this USB buying guide if you’re not

sure which cable to get).

Fig 4.1: Arduino UNO

• An Arduino Uno

• Windows 7, Vista, and XP

• Installing the Drivers for the Arduino Uno (from Arduino.cc)

• Plug in your board and wait for Windows to begin it’s driver installation

process After a few moments, the process will fail, despite its best efforts

24

• Click on the Start Menu, and open up the Control Panel

• Look under Ports (COM & LPT). You should see an open port named

“Arduino UNO (COMxx)”.

• While in the Control Panel, navigate to System and Security. Next, click on System

Once the System window is up, open the Device Manager.

Fig 4.2: Device Manager

• If there is no COM & LPT section, look under ‘Other Devices’ for ‘Unknown

Device’.

• Right click on the “Arduino UNO (COMxx)” or “Unknown Device” port and choose

the “Update Driver Software” opti Next, choose the “Browse my computer for Driver

software” option.

Fig 4.3: Update Driver Software

25

• Finally, navigate to and select the Uno’s driver file, named “ArduinoUNO.inf”,

located in the “Drivers” folder of the Arduino Software download (not the “FTDI

USB Drivers” sub-directory).

• If you cannot see the .inf file, it is probably just hidden. You can select the

‘drivers’ folder with the ‘search sub-folders’ option selected instead.

Windows will finish up the driver installation.

After following the appropriate steps for your software install, we are now ready to

test your first program with your Arduino board!

• Launch the Arduino application

• If you disconnected your board, plug it back in

• Open the Blink example sketch by going to: File > Examples > 1.Basics > Blink

• After a second, you should see some LEDs flashing on your Arduino, followed

by the message ‘Done Uploading’ in the status bar of the Blink sketch.

Fig 4.4: Arduino File basics

• If everything worked, the onboard LED on your Arduino should now be

blinking! You just programmed your first Arduino!

• Select the type of Arduino board you’re using: Tools > Board > your board type

26

• If you’re not sure which serial device is your Arduino, take a look at the

available ports, then unplug your Arduino and look again.

• Select the serial/COM port that your Arduino is attached to: Tools > Port

> COMxx

Fig 4.5: Arduino Tools Board

• The one that disappeared is your Arduino.With your Arduino board connected,

and the Blink sketch open, press the ‘Upload’ button.

Fig 4.6: Blink Arduino Tools

4.2 RESEARCH

The embedded systems industry was born with the invention of microcontrollers and since

then it has evolved into various forms, from primarily being designed for machine control

27

applications to various other new verticals with the convergence of communications. Today it

spans right form small metering devices to the multi-functional smartphones. I will cover the

areas that are currently focused for development in embedded systems and state what are the

ongoing

Security

Security remains a great challenge even today. Ongoing Research is to sustain physical

tampering, mechanisms to trust the software, authenticate the data and securely communicate

over internet. With the advent of IoT/IoE, not only the number devices will continue to

increase but also will the number of possible attack vectors. Many challenges remain ahead to

get the connected devices on a billion scale.

Connectivity

Wi-Fi, BLE, ZigBee, Thread, ANT, etc have been adapted by embedded system experts from

considerable time. Head-on competition between these groups is in progress to determine as

to who will emerge as the best solution provider to this huge estimated market of IoT/IoE.

4G/5G on low power devices is the ongoing experimentation which will make embedded

systems easily and robustly connect to the internet. Communication using GSM/LTE in

licensed/unlicensed communication bands with the cloud can change the ball game of IoE all

together.

Memory

Various type of volatile/non-volatile memories with variable sizes and speeds are widely

available today. Research is more towards organizing them in best possible architecture to

reach closer to the design goal of optimal power-performance-cost.

Energy

Power/Battery management has been under focus for some time. Usage of renewable

resources to power device's lifetime is currently the challenge that is tried to address;

especially for wearables. Optimal power usage to get Longer Battery Life with new

Hardware/Software architectural designs will continue for some time.

System

Multicore (Symmetric/Asymmetric) architectures are experimented since long. Addition of

GPUs to systems for VR/Gaming/Machine learning is addressed currently. Programmable

SOCs (PSOCs) - (Configurable Hardware Capability) have been there for a long time now,

28

but some has not yet gained the momentum. Application specific computer architectures is

also in the pipeline in order to optimize the design matrix of power performance-cost.

Performance

Real-time on-board Image/Video/Audio processing, feature enabled cameras, on board

machine learning are all currently experimented with varied approaches.

Commercialization of these technologies has already started but there is still some time

to get the best out of these technologies and there is lot of scope to make them more user

friendly

Other than this, hardening of modular software functionalities (Yes lot of architectures

are coming up with hardware performing redundant software functionalities). Ongoing

research is to analyse the performance and determine the applications where this strategy can

be fruitful.

Networking

Wireless Sensor Networks, Machine to Machine Communication/Interaction, Human

Computer Interaction, Security Gateway protocols are still being improved. Light weight

algorithms with optimal security will be targeted for embedded systems.

Real Time Operating Systems (RTOS)

Many companies are backing at least one Real Time Open-Source Operating System and there

are many out there. Challenge is to cover the wide span of devices, there functionalities and

variety of applications.

Application Specific Research Area Medical Entertainment.

29

CHAPTER -5

WORKING AND ITS COMPONENTS

5.1 BLOCK DIAGRAM

Fig 5.1: Block Diagram OF Head, Bluetooth And Voice Controlled Wheelchair

This block diagram represents a system that controls a motorized device using an ESP32

microcontroller, an MPU6050 sensor, and Bluetooth communication. Here's a breakdown of

the components and their interactions:

Components:

Cap Unit:

The system consists of a cap unit, which houses an MPU6050 sensor and an ESP32 (1)

microcontroller. The MPU6050 is a motion sensor that detects head movements such as tilting and

rotation. This sensor data is processed by ESP32 (1) and transmitted wirelessly using ESP-NOW, a

low-latency communication protocol, to the main control unit.

30

Mobile Communication:

On the other side, there is a mobile communication module that allows users to control the

system using a mobile device. The mobile phone connects to an HC-05 Bluetooth module,

which is linked to ESP32 (2). This provides an additional means of control, allowing commands

to be sent via a smartphone.

Main Control Unit:

The main control unit, ESP32 (2), serves as the central processor. It receives motion data from

ESP32 (1) through ESP-NOW and command signals from the mobile via Bluetooth. Based on

these inputs, ESP32 (2) processes the data and determines the necessary motor actions. It then

sends control signals to two BTS7960 motor drivers, which control the left and right motors.

Motor Control:

The motor drivers receive signals from ESP32 (2) and adjust the movement accordingly. The

left motor is controlled by one BTS7960 module, while the right motor is managed by another.

This setup allows the system to execute movements such as forward, backward, left, and right

turns based on the user's head movements or mobile commands.

Working Principle:

• The user wears a cap equipped with an MPU6050 sensor and ESP32 (1).

• The MPU6050 detects head movements (tilt, rotation, etc.).

• ESP32 (1) sends the processed motion data to ESP32 (2) using ESP-NOW.

• The user can also send commands via a mobile device, which communicates through

Bluetooth (HC-05).

• ESP32 (2) processes the received signals and controls the BTS7960 motor drivers.

• The motor drivers adjust the speed and direction of the left and right motors, enabling

movement.

5.2 WORKING

The Head, Bluetooth, and Voice-Controlled Wheelchair is a revolutionary assistive

technology that empowers individuals with mobility impairments by offering multiple

control methods. This innovative system leverages advanced sensor technology and

sophisticated control algorithms to provide a more intuitive and efficient means of

wheelchair navigation.

31

The core components of the system include a head movement detection module, a voice

recognition system, and a Bluetooth-enabled control interface. These sensors accurately

detect head gestures, spoken commands, and Bluetooth-based inputs, generating analog

signals. The analog signals are then converted into digital signals by an analog-to-digital

converter (ADC) and processed by a microcontroller.

The microcontroller plays a crucial role in interpreting the sensor data and generating

appropriate control commands. It employs sophisticated algorithms to analyze the data, filter

out noise, and extract relevant information. The control algorithm maps specific head

movements, voice instructions, or Bluetooth inputs to corresponding wheelchair actions

such as forward, backward, left, right, and stop. By customizing the algorithm to individual

user preferences, the system can be tailored to meet diverse needs and abilities.

To ensure seamless communication between the various control modules and the

wheelchair, a robust wireless communication system is implemented. The control signals

generated by the microcontroller are transmitted wirelessly to the wheelchair's control unit.A

wireless communication module, such as Bluetooth or Wi-Fi, is used to establish a reliable

connection between the control devices and the wheelchair.

The wheelchair’s control unit receives the wireless signals and decodes the control

commands. It then translates the commands into specific motor control signals, which are

sent to the wheelchair’s motors. The motors drive the wheels to execute the desired

movements, ensuring smooth and responsive mobility.

One of the key challenges in developing a Head, Bluetooth, and Voice-Controlled

Wheelchair is ensuring accurate and reliable sensor data. Noise and interference can affect

the performance of the sensors, leading to inaccurate control commands. To address this

challenge, advanced signal processing techniques are employed to filter out noise and

improve the accuracy of sensor readings.

In addition to signal processing techniques, environmental factors and user variability

also play a crucial role in ensuring reliable control of the wheelchair. Factors such as ambient

noise, varying lighting conditions, and different user head movement patterns can introduce

inconsistencies in sensor data. To overcome these challenges, adaptive algorithms can be

integrated, allowing the system to learn and adjust to each user's unique movement patterns

and voice characteristics. Moreover, incorporating real-time feedback mechanisms, such as

haptic feedback or auditory confirmation.

32

Another important consideration is power consumption. The head movement sensors,

voice recognition module, and wireless communication system must be energy-efficient to

minimize battery life issues. Low-power components and efficient power management

techniques are essential to ensure the system’s longevity.

The user interface is also a crucial aspect of the system. A user-friendly interface allows

users to customize the system to their preferences and adjust sensitivity settings. Clear visual

feedback can help users understand the system’s status and make necessary adjustments.

Safety is paramount in the design and implementation of the Head, Bluetooth, and

Voice- Controlled Wheelchair. The system should incorporate safety features, such as

emergency stop buttons and obstacle detection sensors. Additionally, the wireless

communication protocol should be secure to prevent unauthorized access and malicious

attacks.

By addressing these challenges and incorporating advanced technologies, the Head,

Bluetooth, and Voice-Controlled Wheelchair has the potential to revolutionize the field of

assistive technology. It offers a more intuitive and efficient means of wheelchair control,

empowering individuals with disabilities to lead more independent and fulfilling lives.

5.2.1 Introduction to arduino:

The Arduino is a family of microcontroller boards to simplify electronic design, prototyping

and experimenting for artists, hackers, hobbyists, but also many professionals. People use it

as brains for their robots, to build new digital music instruments, or to build a system that

lets your house plants tweet you when they’re dry. Arduinos (we use the standard Arduino

Uno) are built around an ATmega microcontroller — essentially a complete computer with

CPU, RAM, Flash memory, and input/output pins, all on a single chip. Unlike, say, a

Raspberry Pi, it’s designed to attach all kinds of sensors, LEDs, small motors and speakers,

servos, etc. directly to these pins, which can read in or output digital or analog voltages

between 0 and 5 volts.

The Arduino connects to your computer via USB, where you program it in a simple

language (C/C++, similar to Java) from inside the free Arduino IDE by uploading your

compiled code to the board. Once programmed, the Arduino can run with the USB link back

to your computer, or stand-alone without it — no keyboard or screen needed, just power. It

offers a more intuitive and efficient means of wheelchair control, empowering individuals

with disabilities to lead more independent and fulfilling lives.

33

Arduino boards are microcontroller-based platforms that enable users to create various

electronic projects. The most common board is the Arduino Uno, which features an

ATmega328P microcontroller, but there are several other models tailored for specific

applications, such as the Arduino Mega, Nano, and Leonardo.

Fig 5.2: Structure of Arduino Board

Looking at the board from the top down, this is an outline of what you will see (parts of the

board you might interact with in the course of normal use are highlighted)

Fig 5.3: Arduino Board

34

Starting clockwise from the top center:

• Analog Reference pin (orange)

• Digital Ground (light green)

• Digital Pins 2-13 (green)

• Digital Pins 0-1/Serial In/Out - TX/RX (dark green) - These pins cannot be used for

digital i/o (Digital Read and Digital Write) if you are also using serial communication

(e.g. Serial.begin).

• Reset Button - S1 (dark blue)

• In-circuit Serial Programmer (blue-green)

• Analog In Pins 0-5 (light blue)

• Power and Ground Pins (power: orange, grounds: light orange)

• External Power Supply In (9-12VDC) - X1 (pink)

• Toggles External Power and USB Power (place jumper on two pins closest to

desired supply) - SV1 (purple)

• USB (used for uploading sketches to the board and for serial communication

between the board and the computer; can be used to power the board) (yellow)

DIGITAL PINS

In addition to the specific functions listed below, the digital pins on an Arduino board can be

used for general purpose input and output via the pin mode(), Digital read(), and Digital

write() commands. Each pin has an internal pull-up resistor which can be turned on and off

using digital Write() (w/ a value of HIGH or LOW, respectively) when the pin is configured

as an input. The maximum current per pin is 40mA.

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data.

On the Arduino Diecimila, these pins are connected to the corresponding pins of the

FTDI USB-to-TTL Serial chip. On the Arduino BT, they are connected to the

corresponding pins of the WT11 Bluetooth module. On the Arduino Mini and

LilyPad Arduino, they are intended for use with an external TTL serial module (e.g.

the Mini-USB Adapter).

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt

on a low value, a rising or falling edge, or a change in value.

35

• PWM: 3, 5, 6, 9, 10, and 11 Provide 8-bit PWM output with the analog write()

function. On boards with an ATmega8, PWM output is available only on pins 9, 10,

and 11.

• BT Reset: 7. (Arduino BT-only) Connected to the reset line of the Bluetooth module.

• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI

communication, which, although provided by the underlying hardware, is not

currently included in the Arduino language.

• LED: 13. On the Decimole and Lilypad, there is a built-in LED connected to digital

pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

Analog pins

In addition to the specific functions listed below, the analog input pins support 10-bit analog-

to-digital conversion (ADC) using the analog Read() function. Most of the analog inputs can

also be used as digital pins: analog input 0 as digital pin 14 through analog input 5 as digital

pin 19. Analog inputs 6 and 7 (present on the Mini and BT) cannot be used as digital pins.

• I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire

library (documentation on the Wiring website).

Power pins

• VIN (sometimes labelled "9V"): The input voltage to the Arduino board when it's

using an external power source (as opposed to 5 volts from the USB connection or

other regulated power source). You can supply voltage through this pin, or, if

supplying voltage via the power jack, access it through this pin. Also note that the

Lily Pad has no VIN pin and accepts only a regulated input.

• 5V: The regulated power supply used to power the microcontroller and other

components on the board. This can come either from VIN via an on-board regulator,

or be supplied by USB or another regulated 5V supply.

• 3V3 (Decimole-only) : A 3.3 volt supply generated by the on-board FTDI chip.

• GND: Ground pins.

36

Other pins

• AREF: Reference voltage for the analog inputs. Used with analog Reference().

• Reset: (decimole-only) Bring this line LOW to reset the microcontroller. Typically

used to add a reset button to shields which block the one on the board.

Atmega328

The ATmega328 is an 8-bit microcontroller based on the AVR architecture. It is popular for

its balance of performance, power consumption, and ease of use, making it a favourite among

hobbyists and professionals for various electronics projects.

The ATmega328 can be programmed using the Arduino IDE, which simplifies the process

with a user-friendly interface and a set of libraries. Users typically write in a simplified

version of C/C++. The IDE also provides built-in functions that allow for easy interaction

with the microcontroller's hardware features.

Pin diagram

Fig 5.4: Pin Configuration of Atmega328

Pin Description VCC:

Digital supply

voltage. GND:

Ground.

37

Port A (PA7-PA0):

Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit

bidirectional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-

up resistors (selected for each bit). The Port A output buffers have symmetrical drive

characteristics with both high sink and source capability. When pins PA0 to PA7 are used as

inputs and are externally pulled low, they will source current if the internal pull-up resistors

are activated. The Port A pins are tri-stated when a reset condition becomes active, even if

the clock is not running.

Port B (PB7-PB0):

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each

bit). The Port B output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port B pins that are externally pulled low will source current

if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition

becomes active, even if the clock is not running. Port B also serves the functions of various

special features of the ATmega32.

Port C (PC7-PC0):

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each

bit). The Port C output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port C pins that are externally pulled low will source current

if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition

becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-

up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset

occurs. The TD0 pin is tri-stated unless TAP states that shift out data are entered.

Port D (PD7-PD0):

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each

bit). The Port D output buffers have symmetrical drive characteristics with both high sink

Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit

bidirectional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-

up resistors (selected for each bit). The Port A output buffers have symmetrical drive

characteristics with both high sink and source capability. The Port A pins are tri-stated when

a reset condition becomes active, even if the clock is not running.

38

 As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,

even if the clock is not running. Port D also serves the functions of various special features

of the ATmega32.

Reset (Reset Input):

A low level on this pin for longer than the minimum pulse length will generate a reset,

even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1:

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2:

Output from the inverting Oscillator amplifier.

AVCC:

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally

connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected

to VCC through a low-pass filter.

AREF:

AREF is the analog reference pin for the A/D Converter.

FEATURES

• 1.8-5.5V operating range

• Up to 20MHz

• Part: ATMEGA328P-AU

• 32kB Flash program memory

• 1kB EEPROM

• 2kB Internal SRAM

• 2 8-bit Timer/Counters

• 16-bit Timer/Counter

• RTC with separate oscillator

39

• 6 PWM Channels

• 8 Channel 10-bit ADC

• Serial USART

• Master/Slave SPI interface

• 2-wire (I2C) interface

• Watchdog timer

• Analog comparator

• 23 IO lines

• Data retention: 20 years at 85C/ 100 years at 25C

• Digital I/O Pins are 14 (out of which 6 provide PWM output) □ Analog Input Pins

are 6.

• DC Current per I/O is 40 mA

• DC Current for 3.3V Pin is 50mA

AVR CPU CORE

The AVR core combines a rich instruction set with 32 general purpose working registers. All

the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two

independent registers to be accessed in one single instruction executed in one clock cycle.

The resulting architecture is more code efficient while achieving throughputs up to ten times

faster than conventional CISC microcontrollers.

In order to maximize performance and parallelism, the AVR uses a Harvard architecture

with separate memories and buses for program and data. Instructions in the program memory

are executed with a single level pipelining. While one instruction is being executed, the

nextinstruction is pre-fetched from the program memory. This concept enables instructions

to be executed in every clock cycle. The program memory is In-System Reprogrammable

Flash memory. The fast-access Register File contains 32 x 8-bit general purpose working

registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic

Unit (ALU) operation. In a typical ALU operation, two operands are output from the

40

Register File, the operation is executed, and the result is stored back in the Register File– in

one clock cycle.

The main function of the CPU core is to ensure correct program execution. The AVR

CPU is capable to access memories, perform calculations, control peripherals, and handle

interrupts.

OVERVIEW

This section discusses the AVR core architecture in general. The main function of the CPU

core is to ensure correct program execution. The CPU must therefore be able to access

memories, perform calculations, control peripherals, and handle interrupts.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for

Data Space addressing – enabling efficient address calculations. One of these address

pointers can also be used as an address pointer for look up tables in Flash program memory.

These added function registers are the 16-bit X-, Y-, and Z-register, described later in this

section.

Fig 5.5: Block Diagram

41

ALU – Arithmetic logic unit

The high-performance AVR ALU operates in direct connection with all the 32 general

purpose working registers. Within a single clock cycle, arithmetic operations between

general purpose registers or between a register and an immediate are executed. The ALU

operations are divided into three main categories – arithmetic, logical, and bit functions.

Some implementations of the architecture also provide a powerful multiplier supporting both

signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a

detailed description.

Status register

The Status Register contains information about the result of the most recently executed

arithmetic instruction. This information can be used for altering program flow in order to

perform conditional operations. Note that the Status Register is updated after all ALU

operations, as specified in the Instruction Set Reference. This will in many cases remove the

need for using the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and

restored when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG is defined as:

Fig 5.6: AVR status register

Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual

interrupt enable control The Global Interrupt Enable bit must be set for the interrupts to be

enabled. The individual interrupt enable control is then performed in separate control

registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled

independent of the individual interrupt enable settings. The I-bit is cleared by hardware after

an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.

The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as

described in the instruction set reference.

42

Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit Load) and BST (Bit Store) use the T-bit as source or

destination for the operated bit. A bit from a register in the Register File can be copied into

T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register

File by the BLD instruction.

Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations The Half Carry

Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD

arithmetic. See the “Instruction Set Description” for detailed information.

Bit 4 – S: Sign Bit

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement

Overflow Flag V. See the “Instruction Set Description” for detailed information.

Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetic.

Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation.

Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation.

Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation.

Stack pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing

return addresses after interrupts and subroutine calls. Note that the Stack is implemented as

growing from higher to lower memory locations. The Stack Pointer Register always points

to the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the

Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack

Pointer.

43

The Stack in the data SRAM must be defined by the program before any subroutine calls

are executed or interrupts are enabled. Initial Stack Pointer value equals the last address of

the internal SRAM and the Stack Pointer must be set to point above start of the SRAM.

The AVR ATmega128A Stack Pointer is implemented as two 8-bit registers in the I/O

space. The number of bits actually used is implementation dependent. Note that the

dataspace in some implementations of the AVR architecture is so small that only SPL is

needed. In this case, the SPH Register will not be present.SPH and SPL - Stack Pointer High

and Low Register.

Table 5. 2.1 Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL ,

ICALL

RCALL

Decremented by 2 Return address is pushed onto the stack with a

subroutine call or interrupt

POP Incremented by 1 Data is popped from the stack

RET RETI Incremented by 2 Return address is popped from the stack with

return from subroutine or return from

interrupt

Interrupt response time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles

44

minimum. After four clock cycles the program vector address for the actual interrupt

handling routine is executed.

During this four clock cycle period, the Program Counter is pushed onto the Stack.

The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles.

If an interrupt occurs during execution of a multi-cycle instruction, this instruction is

completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep

mode, the interrupt execution response time is increased by four clock cycles. This increase

comes in addition to the start-up time from the selected sleep mode.

AVR Memories

This section describes the different memories in the ATmega328. The AVR architecture has

two main memory spaces, the Data Memory and the Program Memory space. In addition,

theATmega328 features an EEPROM Memory for data storage. All three memory spaces

are linear and regular.

In-System Reprogrammable Flash Program Memory:

The ATmega328 contains 4/8/16/32Kbytes On-chip In-System Reprogrammable Flash

memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is

organized as 2/4/8/16K x 16. For software security, the Flash Program memory space is

divided into two sections, Boot Loader Section and Application Program Section. The Flash

memory has an endurance of at least 10,000 write/erase cycles. The ATmega328 Program

Counter (PC) is 11/12/13/14 bits wide, thus addressing the 2/4/8/16K program memory

locations.

SRAM Data Memory:

ATmega328 is a complex microcontroller with more peripheral units than can be

supported within the 64 locations reserved in the Opcode for the IN and OUT instructions.

For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and

LD/LDS/LDD instructions can be used.

The lower 768/1280/1280/2303 data memory locations address both the Register File, the

I/O memory, Extended I/O memory, and the internal data SRAM. The first 32 locations

address the Register File, the next 64 location the standard I/O memory, then 160 locations

of Extended I/O memory, and the next 512/1024/1024/2048 locations address the internal

data SRAM. The five different addressing modes for the data memory cover: Direct,.

45

Indirect with Displacement, Indirect, Indirect with Pre-decrement, and Indirect with

Post-increment. In The Register File, Registers R26 to R31 Feature the indirect

addressing pointer registers. The direct addressing reaches the entire data space. The

Indirect with Displacement mode reaches 63 address locations from the base address

given by the Y- or Z register

When using register indirect addressing modes with automatic pre-decrement and

postincrement, the address registers X, Y, and Z are decremented or incremented. The

32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and

the 512/1024/1024/2048 bytes of internal data SRAM in the ATmega328 are all

accessible through all these addressing modes.

Interrupts

This section describes the specifics of the interrupt handling as performed in the

Atmega328. In Atmega328Each Interrupt Vector occupies two instruction words and

the Reset Vector is affected by the BOOTRST fuse, and the Interrupt Vector start

address is affected by the IVSEL bit in MCUCR.

When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start

of the Boot Flash Section. The address of each Interrupt Vector will then be the address

in this table added to the start address of the Boot Flash Section.Table below shows reset

and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL

settings. The Uno differs from all preceding boards in that it does not use the FTDI

USB-to-serial driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to

versionR2) programmed as a USB- to-serial converter.

Table 5. 2.2 Reset and Interrupt Vectors in ATMEGA 328 and ATMEGA 328P

Vector

No.

Program

Address

Source Interrupt Definition

1 0x0000 RESET External Pin, Power-on Reset,

Brown-out Reset and Watchdog

System Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 0

46

4 0x0006 PCINTO Pin Change Interrupt Request 0

5 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x000A PCINT2 Pin Change Interrupt Request 2

7 0x000C WDT Watchdog Time-out Interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 Compare Match

A

9 0x0010 TIMER2 COMPB Timer/Counter2 Compare Match

B

10 0x0012 TIMER2 OVF Timer/Counter 2 Overflow

11 0x0014 TIMER1 CAPT Timer/Counter 2 Capture Event

12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match

A

13 0x0018 TIMER1 COMPB Timer/Counter1 Compare Match

B

14 0x001A TIMER 1 OVF Timer/Counter1 Overflow

15 0x001C TIMER0 COMPA Timer/Counter0 Compare Match

A

16 0x001E TIMER0 COMPB Timer/Counter0 Compare Match

B

17 0x0020 TIME0 OVF Timer/Counter0 Overflow

18 0x0022 SPI, STC SPI Serial Transfer Complete

19 0x0024 USART, RX USART RX Complete

20 0x0026 USART, UDRE USART, Data Register Empty

21 0x0028 USART, TX USART, TX Complete

22 0x002A ADC ADC Conversion Complete

23 0x002C EE READY EEPROM Ready

24 0x002E ANALOG COMP Analog Comparator

25 0x0030 TWI 2-wire Serial Interface

26 0x0032 SPM READY Store Program Memory Ready

47

If the program never enables an interrupt source, the Interrupt Vectors are not used, and

regular program code can be placed at these locations. This is also the case if the Reset

Vector is in the Application section while the Interrupt Vectors are in the Boot section or

vice versa.

Table 5. 2.3 Reset and Interrupt Vectors Placement in ATmega328 and ATmega328P

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x002

1 1 0x000 Boot Reset Address + 0x0002

0 0 BootReset

Address

0x002

0 1 BootReset

Address

Boot Reset Address + 0x002

Arduino with ATmega328

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14

digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 1 MHz

ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It

contains everything needed to support the microcontroller; simply connect it to a computer

with a USB cable or power it with a AC-to-DC adapter or battery to get started.

• Pin out: Added SDA and SCL pins that are near to the AREF pin and two other new

pins placed near to the RESET pin, the IOREF that allow the shields to adapt to the

voltage provided from the board. In future, shields will be compatible with both the

board that uses the AVR, which operates with 5V and with the Arduino. Due that

operates with 3.3V. The second one is a not connected pin that is reserved for future

purposes.

• Stronger RESET circuit.

• Atmega 16U2 replace the 8U2.

• "Uno" means one in Italian and is named to mark the upcoming release of Arduino

1.0. The Uno and version 1.0 will be the reference versions of Arduino, moving forward.

48

The Uno is the latest in a series of USB Arduino boards, and the reference model for the

Arduino platform; for a comparison with previous versions, see the index of Arduino boards.

Arduino Characteristics Power:

The Arduino Uno can be powered via the USB connection or with an external power supply.

The power source is selected automatically. External (non-USB) power can come either from

an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1

mmcenter-positive plug into the board's power jack. Leads from a battery can be inserted in

the Gnd and Vin pin headers of the POWER connector. The board can operate on an external

supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less

than five volts and the board may be unstable. If using more than 12V, the voltage regulator

may overheat and damage the board. The recommended range is 7 to 12 volts.

 The power pins are as follows:

• VIN: The input voltage to the Arduino board when it's using an external power source

(as opposed to 5 volts from the USB connection or other regulated power source). You

can supply voltage through this pin, or, if supplying voltage via the power jack, access

it through this pin.

• 5V: This pin outputs a regulated 5V from the regulator on the board. The board can be

supplied with power either from the DC power jack (7 - 12V), the USB connector (5V),

or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses

the regulator, and can damage your board. We don't advise it.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is

50 mA.

• GND. Ground pins.

• IOREF. This pin on the Arduino board provides the voltage reference with which the

microcontroller operates. A properly configured shield can read the IOREF pin voltage

and select the appropriate power source or enable voltage translators on the outputs for

working with the 5V or 3.3V.

Memory:

The ATmega328 has 32 KB (with 0.5 KB used for the boot loader). It also has 2 KB of and

1 KB of EEPROM (which can be read and written with the EEPROM library). Serial

Communication: The ATmega328 microcontroller features 32 KB of Flash memory, with

http://arduino.cc/en/Main/Boards
http://arduino.cc/en/Main/Boards

49

0.5 KB reserved for the bootloader, allowing for program storage and execution. It also

includes 2 KB of SRAM for temporary data handling and 1 KB of EEPROM, which provides

non-volatile storage and can be accessed using the EEPROM library. This memory

architecture enables efficient data management for embedded applications.

5.2.2 Block diagram

Fig 5.7: Arduino Block Diagram

 The block diagram represents the architecture of an AVR microcontroller, showcasing its key

functional units and their interconnections. At the core of the microcontroller is the AVR CPU,

responsible for executing instructions and managing data flow. The memory architecture

includes Flash memory for program storage, SRAM for temporary data, and EEPROM for

non-volatile data retention. The system's clock and power management features include an

oscillator circuit for clock generation, a power supervision unit with power-on reset (POR)

and brown-out detection (BOD), as well as a watchdog timer and watchdog oscillator for

system reliability.

The microcontroller integrates various communication interfaces, including a Universal

Synchronous and Asynchronous serial Receiver and Transmitter (USART) for serial

communication, a Serial Peripheral Interface (SPI) for high-speed synchronous data transfer,

and a Two-Wire Interface (TWI), also known as I2C, for peripheral communication. It

features multiple timers and counters, including 8-bit and 16-bit timer/counters for precise

timing applications. The analog subsystem consists of an Analog-to-Digital Converter (ADC)

for converting analog signals to digital values, an analog comparator for voltage comparison.

50

5.2.3 Introduction to bluetooth module

Before the Bluetooth module can be understood completely, it is essential to understand how

Wireless communication occurs. Wireless communication occurs by the transference of data

over radio waves. By generating a specific radio signal at the source, its effect can be

detected at the receiver far from the source, which then identifies it and processes the

transmitted information.

Fig 5.8: Bluetooth Module

In a Bluetooth system, the Bluetooth module, which facilitates wireless communication,

generates a signal containing the respective data, which is received by a paired device such

as a microcontroller, smartphone, or computer. The received data can then be processed

based on the specific application requirements. Thus, a Bluetooth system can be visualized

as the sum of the following three components:

• Bluetooth module (transceiver)

• Receiving device (e.g., microcontroller or smartphone)

• Data processing subsystem.

Fig 5.9: Working Of Bluetooth Module

51

A Bluetooth module consists of a built-in antenna, a transceiver, and an encapsulating

material. Bluetooth modules can operate over various classes, with Class 1 offering higher

power and range (~100 meters), while Class 2 operates at a shorter range (~10 meters) but

with lower power consumption, making it ideal for personal device communication. A

Bluetooth-enabled device consists of an antenna, transceiver, and decoder, which

continuously scans for paired devices within its range. Once a paired device is detected, the

Bluetooth module transmits or receives data for processing. The data processing subsystem

provides the means of handling and storing the data.

5.2.4 Bluetooth module and working principle

Bluetooth modules, also referred to as transceivers, facilitate wireless data transmission

between devices. They convert radio frequency signals into digital data that can be processed

by a microcontroller, smartphone, or another receiving device. Bluetooth modules and paired

devices must operate on the same frequency band, typically 2.4 GHz, to establish

communication.

A Bluetooth system consists of two main components: a transmitting module and a

receiving device. Bluetooth modules function similarly to RFID systems but are designed

for two-way wireless communication. The module contains an antenna and an integrated

circuit that manages wireless connections and data transmission.

The Bluetooth module uses radio frequency signals to establish connections and

transmit data wirelessly. To communicate, it uses a built-in antenna to send and receive

signals from other Bluetooth-enabled devices. The data stored and transmitted can be either

static or dynamic, depending on the device’s role in the communication. Bluetooth memory

is primarily read/write, allowing real-time updates and data exchange based on application

requirements.

5.2.5 Introduction to mems sensor

A MEMS (Micro-Electro-Mechanical Systems) sensor is an electronic device that detects

motion, orientation, and acceleration by utilizing microscopic mechanical and electrical

components. MEMS sensors integrate mechanical elements, sensors, actuators, and

electronics onto a single chip, allowing for precise movement detection in compact and

efficient designs. These sensors consist of microstructures that react to external forces, such

as acceleration or tilt, generating electrical signals based on physical motion.

52

MEMS sensors primarily contain two key components: the sensing element (which

detects motion through microscopic mechanical structures) and the signal processing unit

(which converts mechanical movement into an electrical output). The sensor calculates

acceleration, orientation, or tilt by measuring changes in capacitance, piezoresistive

properties, or resonant frequency, depending on the MEMS technology used.

To determine acceleration or orientation, MEMS sensors utilize equations based on

Newton’s laws of motion. These sensors detect movement in multiple axes, allowing real-

time data acquisition for navigation and control applications. For example, if a MEMS

accelerometer detects a sudden change in movement within 0.025 seconds at a predefined

rate, the system can calculate acceleration based on known parameters, helping adjust device

responses accordingly.

MEMS sensors are widely used in motion-sensing applications. They are found in

wearable devices, automotive airbag systems, and smartphone gyroscopes. MEMS sensors

are also essential for robotic motion tracking, virtual reality systems, and industrial

automation. Compared to traditional mechanical sensors, MEMS sensors offer compact size,

low power consumption, and high precision, making them ideal for modern mobility

solutions.

MEMS sensors are also used in medical applications to monitor patient movements,

detect falls, and support prosthetic limb functionality. They play a critical role in improving

safety, performance, and user interaction in various industries, making them a fundamental

component in smart mobility solutions.

Fig 5.10: MEMS SENSOR

53

5.2.6 Introduction to voice control module using command working

The Voice Control Module is an essential component in modern assistive technologies. It

enables users to control electronic systems using voice commands, eliminating the need

forphysical interaction. A voice-controlled system works by recognizing and processing

spoken words, converting them into electrical signals that a microcontroller can interpret and

execute as commands.

A Voice Recognition Module (VRM) is designed to process voice inputs and match them

against predefined commands stored in memory. The module captures the user’s speech

through a microphone, processes it with a built-in Digital Signal Processor (DSP), and

then sends the recognized command to the control system.

Voice Command Processing

Voice command processing in a Voice Control Module involves multiple stages:

● Speech Acquisition – The microphone captures the spoken words.

● Signal Processing – The captured signal is filtered and digitized for analysis.

● Feature Extraction – Important characteristics of the voice are extracted and

compared with pre-recorded commands.

● Command Execution – The system identifies the closest match and triggers the

corresponding function.

When a user issues a voice command, the module processes the input in real time and

activates specific wheelchair functions such as "Move Forward," "Turn Left," "Stop,"

or "Reverse."

5.2.7 Block diagram

The block diagram below illustrates the working of the Voice Control Module and how it

interacts with other components of the wheelchair system.

● Microphone – Captures voice input.

● Pre-Processing Unit – Converts analog speech to digital data.

● Voice Recognition Processor – Matches input with stored commands.

● Microcontroller Unit (MCU) – Processes recognized commands and sends control

signals.

● Motor Driver & Actuators – Executes movements based on processed commands.

Common Voice Commands Used in Wheelchair Control

54

The Voice Control Module recognizes multiple predefined voice commands:

Command Function

"Move Forward" Moves the wheelchair forward.

"Move Backward" Moves the wheelchair backward.

"Turn Left" Turns the wheelchair left.

"Turn Right" Turns the wheelchair right.

"Stop" Stops all movement.

"Speed Up" Increases speed.

"Slow Down" Decreases speed.

TABLE 5.2.4: COMMAND AND FUNCTION OF VOICE CONTROL MODULE

Each command is stored in the Voice Recognition Module (VRM) and matched to

predefined motor functions using the microcontroller

 Fig 5.11: Block Diagram Of Voice Control Module Using Command Working

55

CHAPTER – 6

 RESULTS

Implementing a Bluetooth and voice-controlled wheelchair system enhances mobility and

independence for users with disabilities. The wheelchair is equipped with a microcontroller,

such as the ESP32, which processes commands received via Bluetooth or voice input. A

smartphone or dedicated voice module interprets voice commands and transmits control

signals to the ESP32, directing the wheelchair’s movement. The system integrates motor

drivers to regulate speed and direction, ensuring smooth navigation based on user input.

 Fig 6.1: Result Of A Head, Bluetooth And Voice Controlled Wheelchair

 The Bluetooth module enables wireless communication between the wheelchair and

a mobile app, allowing users to control movement through a touchscreen interface or

predefined voice commands. The voice recognition system processes spoken instructions,

converting them into movement commands for the wheelchair motors. The ESP32 manages

56

communication, processes data, and executes motor control operations, providing a seamless

user experience.

 Fig 6.2: Result Of A Head Motion Control With Cap

In the internet-enabled version, the wheelchair can be integrated with cloud platforms

for remote monitoring and diagnostics. The ESP32 connects to WiFi, enabling real-time

tracking of the wheelchair’s status and location. Users or caregivers can access data via a web

interface or mobile app, receiving alerts in case of low battery, obstacles detected, or

emergency situations. By leveraging platforms like AWS, Firebase, or a custom server, the

system ensures accessibility, safety, and reliability, offering enhanced functionality beyond

basic mobility control.

ADVANTAGES

The integration of Bluetooth and voice control in a wheelchair offers numerous advantages.

First, the voice recognition system enables hands-free operation, providing greater

independence for users with mobility impairments. The Bluetooth module ensures seamless

wireless communication between the wheelchair and a smartphone, allowing users to control

movement effortlessly. The system’s ESP32 microcontroller serves as a cost-effective and

powerful processing unit, managing voice commands and Bluetooth communication with

minimal latency. Additionally, real-time remote monitoring via cloud platforms enhances

safety by enabling caregivers to track the wheelchair’s status and location. The ability to

operate offline using Bluetooth ensures continuous functionality in areas with poor internet

connectivity. Moreover, the integration of all these components results in a compact and

efficient solution that is easy to deploy and manage, improving accessibility and user

57

experience.

APPLICATIONS

This system has a wide range of practical applications. It can be used in assistive technology,

providing enhanced mobility solutions for individuals with disabilities. In healthcare

facilities, it allows caregivers to monitor and control wheelchairs remotely, improving

patient care and safety. The system is also ideal for elderly users, offering an easy-to-use

interface with voice commands for effortless navigation. Additionally, it can be employed in

rehabilitation centers to assist patients recovering from mobility impairments, enabling

controlled movement for therapy sessions. The Bluetooth connectivity allows seamless

integration with smart home systems, enabling users to control their wheelchair alongside

other home automation features. Overall, this system is versatile, serving a range of

applications from personal mobility to healthcare and rehabilitation.

CONCLUSION

In conclusion, the integration of Bluetooth and voice control in a wheelchair provides a

comprehensive solution for enhancing mobility, accessibility, and user independence. The use

of voice recognition ensures hands-free operation, while the Bluetooth module enables

seamless wireless control. The ESP32 microcontroller efficiently processes commands,

ensuring smooth and responsive movement. The system’s ability to connect to the internet for

remote monitoring further enhances safety, making it ideal for users who require assistance.

With real-time tracking, secure data storage, and reliable operation, this setup offers a cost-

effective and efficient mobility solution. The ability to control the wheelchair remotely and

receive alerts makes this system valuable for both personal and healthcare applications.

FUTURE SCOPE

The future scope of this system is vast, with several potential improvements and extensions

that can significantly enhance its functionality, user experience, and efficiency. One

significant area for enhancement is the integration of AI-based motion detection and obstacle

recognition. By leveraging computer vision and machine learning, the system can intelligently

detect and respond to obstacles in real-time, making navigation safer and more reliable,

especially in dynamic or unfamiliar environments.

Another promising development is cloud integration, which would enable real-time

tracking and data analysis. With this, caregivers and healthcare providers could remotely

monitor the wheelchair's status, receive alerts, and assess usage patterns. This would be

58

particularly useful in ensuring user safety and providing timely interventions if abnormal

behavior or emergencies are detected. Additionally, the system could be enhanced to support

semi-autonomous movement using a combination of AI and advanced sensors, allowing the

wheelchair to assist users in navigating complex spaces with minimal manual input.

Energy efficiency is another critical area of improvement. Incorporating battery backup

systems or exploring solar charging solutions can extend the operational time of the

wheelchair, making it more sustainable and practical for prolonged usage. Solar panels could

provide supplementary energy, especially in outdoor settings, reducing reliance on frequent

recharging and promoting environmentally friendly usage.

As assistive technology continues to evolve, integrating 5G connectivity could

revolutionize the system’s capabilities. With ultra-fast data transmission and low latency, 5G

would enhance real-time remote monitoring, cloud communication, and responsiveness,

enabling seamless interactions between the wheelchair, caregivers, and other smart devices or

healthcare systems. This would also open the door to features such as emergency alerts and

real-time video streaming for better situational awareness.

Future versions of the system could incorporate multi-modal control mechanisms,

including voice commands, gesture recognition, and even brain-computer interface (BCI)

technologies. These features would greatly benefit users with severe mobility impairments,

providing them with more intuitive and accessible ways to operate the wheelchair.

Furthermore, the system could be linked with wearable health devices to continuously monitor

vital signs such as heart rate, oxygen levels, and body temperature, transmitting this data to

caregivers for proactive healthcare management.

Edge computing can be adopted to handle data processing locally on the device, reducing

reliance on the cloud and ensuring faster decision-making. AI algorithms could be

personalized to learn user preferences and behavior patterns, optimizing navigation and

control for each individual. To ensure data privacy and protection, strong cybersecurity

measures like encryption, secure communication protocols, and access controls must be

implemented as connectivity expands.

Lastly, a modular and scalable design would allow the system to evolve over time. Users

could easily add new features or upgrade existing ones without needing a complete overhaul.

This flexibility ensures long-term adaptability and cost-effectiveness as new technologies

emerge and user needs change.

59

REFERENCES

[1]. Ashish Kushwaha, Gaurav Katiyar, & Harshita Katiyar, Hemant Yadav, Saxena

‘Bluetooth and Voice-Controlled Wheelchair System’; National Student Conference On

“Advances in Electrical & Information Communication Technology” AEICT-2014.

[2]. Hu Jian-ming; Li Jie; Li Guang-Hui, "Assistive Mobility System Based on Bluetooth

and Voice Control," Intelligent Networks and Intelligent Systems (ICINIS), 2012 Fifth

International Conference on, vol., no., pp.199,201, 1-3 Nov. 2012.

[3]. C. Prabha, R. Sunitha, R. Anitha; Smart Wheelchair Navigation Using Bluetooth and

Voice Commands; International Journal of Advanced Research in Electrical, Electronics and

Instrumentation Engineering.

[4]. T. Krishna Kishore, T. Sasi Vardhan, N. Lakshmi Narayana “Wheelchair Control Using

a Reliable Embedded System with Bluetooth and Voice Recognition” International Journal

of Computer Science and Network Security, February 2010.

[5]. Nirav Thakor, Tanmay Vyas, Divyang Shah; Intelligent Wheelchair Control System

Based on ARM & Bluetooth; International Journal for Research in Technological Studies

ISSN: - Applied (Online) Vol-1, Issue - 1, Dec 2013.

[6]. Raj Kamal, “Embedded System Architecture Programming and Design” (2nd edition),

Tata McGraw Hill.

[7]. Sri Krishna Chaitanya Varma, Poornesh, Tarun Varma, Harsha; Voice-Controlled

Wheelchair Navigation System Using Bluetooth and Embedded Technology; International

Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013.

[8]. Ramani1 R, Valarmathy S, Vanitha NS, Selvaraju S, Thiruppathi M, Thangam R. Smart

Mobility and Assistance System Based on Bluetooth and Voice Control. Indian Journal

Intelligent Systems and Applications. 2013; 5–6.

60

PENDIX

Appendix-1: Gather Components

Before beginning the project, ensure you have all necessary components:

1. ESP32 Microcontroller

2. Bluetooth Module

3. Voice Recognition Module

4. Motor Driver Module

5. Obstacle Sensors: For detecting objects in the wheelchair's path.

6. Power Supply: (12V battery or rechargeable battery pack).

7. Jumper Wires, Breadboard, Resistors: For prototyping.

8. Smartphone/Device: For controlling the wheelchair via Bluetooth.

Appendix-2: Circuit Design & Wiring

1.1 : ESP32 Pin Connections

1. Bluetooth Module: Connect to the ESP32 using UART (TX/RX).

2. Voice Module: Connect to the ESP32 for serial communication.

3. Motor Driver Module: Connect via PWM/GPIO for motor control.

4. Obstacle Sensors: Connect digital pin(s) of the ESP32 to the sensor module.

5. Power Supply: Use a 12V battery, ensuring proper voltage regulation for the ESP32 &

modules.

1.2 : Power Distribution

1. Ensure the system receives stable power from the wheelchair’s battery.

2. Consider using a backup battery or capacitor to keep the system operational

when power is low.

Appendix-3: Setting Up the ESP32Environment.

Appendix-4: Writing the Firmware for ESP32

 Appendix-5: Testing the System

Appendix-6: Install the System in Wheelchair

Appendix-7: Final Testing and Optimization in Mobile app

Appendix-8: Monitor and Maintain

61

